Design Manual

Designers & Installers

Engineers & Architects

6th Edition

Manufactured by: BW Vista Railings
Tel: 1-800-667-8247 Fax: 604-467-1197

www.VistaRailings.com
TABLE OF CONTENTS

TABLE OF CONTENTS .. 2

LIST OF FIGURES.. 3

LIST OF TABLES... 3

1.0 INTRODUCTION ... 4

2.0 GENERAL DESIGN .. 4
 2.1 DESIGN CRITERIA ... 5
 2.1.1 Loadings .. 5
 2.1.2 Factors Of Safety ... 5
 2.2 MATERIALS AND PROPERTIES .. 6
 2.2.1 Mechanical Properties Of Aluminum Alloys And Elements ... 6
 2.2.2 Physical Properties Of Guardrail Elements ... 6
 2.3 ELEMENT AND SYSTEM LOAD CAPACITIES ... 9
 2.4 LOAD DISTRIBUTION ... 9
 2.5 ANCHORAGE .. 9
 2.6 WEAKNESS IN WELDED ALUMINUM .. 18
 2.7 DESIGN PROCEDURES ... 18
 2.7.1 Top Rail Design ... 18
 2.7.2 Post Design .. 19

3.0 DESIGN TABLES ... 19
 3.1 WIND LOADING .. 19
 3.2 GUARDRAIL HEIGHT VARIATIONS ... 20
 3.3 GUARDRAIL SYSTEMS WITH ALUMINUM PICKET INFILL ... 20
 3.4 GUARDRAIL SYSTEMS WITH GLASS PANEL INFILL ... 20
 3.5 FASCIA MOUNTED POSTS ... 21

4.0 LETTER OF CONFORMANCE ... 22
LIST OF FIGURES

FIGURE 1: MAIN ELEMENTS OF GUARDRAIL SYSTEMS ... 4
FIGURE 2: TYPICAL CROSS-SECTIONS OF COMMON GUARDRAIL ELEMENTS 8
FIGURE 3: ACCEPTABLE GUARDRAIL MOUNTING CONFIGURATIONS 12
FIGURE 4: GUARDRAIL CONFIGURATIONS .. 23
FIGURE 4A: 42” HIGH ALLOWABLE CONFIGURATIONS TYPE 1A 24
FIGURE 4A-A: 42” HIGH ALLOWABLE CONFIGURATIONS TYPE 1A ALTERNATE 25
FIGURE 4B: 42” HIGH ALLOWABLE CONFIGURATIONS TYPE 1B 26
FIGURE 4B-A: 42” HIGH ALLOWABLE CONFIGURATIONS TYPE 1B ALTERNATE 27
FIGURE 4C: 42” HIGH ALLOWABLE CONFIGURATIONS TYPE 1C 28
FIGURE 4D: 42” HIGH ALLOWABLE CONFIGURATIONS TYPE 1D 29
FIGURE 4E: 42” HIGH ALLOWABLE CONFIGURATIONS TYPE 1E 30
FIGURE 4F: 42” HIGH ALLOWABLE CONFIGURATIONS TYPE 2A 31
FIGURE 4G: 42” HIGH ALLOWABLE CONFIGURATIONS TYPE 2B 32
FIGURE 4H: 42” HIGH ALLOWABLE CONFIGURATIONS TYPE 3A 33
FIGURE 4H-A: 42” HIGH ALLOWABLE CONFIGURATIONS TYPE 3A ALTERNATE 34
FIGURE 4I: 42” HIGH ALLOWABLE CONFIGURATIONS TYPE 3B 35
FIGURE 4I-A: 42” HIGH ALLOWABLE CONFIGURATIONS TYPE 3B ALTERNATE 36
FIGURE 4J: 42” HIGH ALLOWABLE CONFIGURATIONS TYPE 3C 37
FIGURE 4K: 42” HIGH ALLOWABLE CONFIGURATIONS TYPE 3D 38
FIGURE 4L: 42” HIGH ALLOWABLE CONFIGURATIONS TYPE 4A 39
FIGURE 4M: 42” HIGH ALLOWABLE CONFIGURATIONS TYPE 4B 40
FIGURE 4N: 42” HIGH ALLOWABLE CONFIGURATIONS TYPE 5A 41
FIGURE 4O: 42” HIGH ALLOWABLE CONFIGURATIONS TYPE 5B 42
FIGURE 4P: 42” HIGH ALLOWABLE CONFIGURATIONS TYPE 6A 43
FIGURE 4P-A: 42” HIGH ALLOWABLE CONFIGURATIONS TYPE 6A ALTERNATE 44
FIGURE 4Q: 42” HIGH ALLOWABLE CONFIGURATIONS TYPE 6B 45

LIST OF TABLES

TABLE 1: MECHANICAL PROPERTIES OF ALUMINUM ALLOYS AND ELEMENTS 6
TABLE 2: PHYSICAL PROPERTIES OF COMMON ELEMENTS ... 7
TABLE 3: BW VISTA RAILINGS LTD. TESTING RESULTS .. 10
1.0 INTRODUCTION

Permanent guardrail systems are required near or at the open sides of elevated walking/viewing surfaces for the purpose of minimizing the potential of an accidental fall to a lower level.

Aluminum guardrail assemblies are commonly comprised of straight sections of top rail elevated and supported above a floor by uniformly spaced posts. The posts are anchored to the floor system by means of anchor screws or bolts. A bottom channel runs between support posts just above the floor system. The vertical space between the posts, the bottom channel and top rail is infilled with either glass panels or aluminum pickets. Figure 1 below illustrates the main elements of a glass panel and aluminum picket guardrail system.

![Guardrail System Diagram](image)

FIGURE 1: MAIN ELEMENTS OF GUARDRAIL SYSTEMS

2.0 GENERAL DESIGN

This manual has been compiled to provide relevant structural information which will enable designers, installers, architects, and engineers to select safe and code-conforming guardrail designs using Alco Ventures Inc. products.

The major considerations for the structural design of guardrails are:

1. Structural design criteria as established by governing building codes, bodies and authorities or by special established project design requirements,

2. Mechanical properties of material used in manufacture of guardrail elements,

3. Physical properties of guardrail elements,

4. Load capacities of guardrail elements and component systems,

5. Load distribution characteristics of various guardrail elements and systems, and

6. Proper anchorage of support elements to surrounding supporting structures.
2.1 DESIGN CRITERIA

2.1.1 Loadings

Structural design loading requirements for guardrails are specified by governing building codes and bodies, local ordinances, project specifications and/or regulatory authorities. Usually a uniformly distributed load and/or concentrated load applied to the top rail is specified. The loading requirements of The National Building Code of Canada (NBCC) 2005 for guardrails are provided under clauses 4.1.5.15. Loads on Guards 1) to 5). The clauses are repeated below:

4.1.5.15. Loads on Guards

1) The minimum specified horizontal load applied inward or outward at the top of every required guard shall be
 a) 3.0 kN/m (205.6 plf) for means of egress in grandstands, stadia, bleachers and arenas,
 b) a concentrated load of 1.0 kN (225 lbs.) applied at any point for access ways to equipment platforms, contiguous stairs and similar areas where the gathering of many people is improbable and
 c) 0.75 kN/m (51.4 plf) or a concentrated load of 1.0 kN (225 lbs.) applied at any point, whichever governs, for locations other than those described in Clauses (a) and (b).

2) Individual elements within the guard, including solid panels and pickets, shall be designed for a load of kN (112.5 lbs.) applied over an area of 100 mm (4") by 100 mm (4") located at any point in the element or elements so as to produce the most critical effect.

3) The loads required in Sentence (2) need not be considered to act simultaneously with the loads provided for in Sentences (1) and (4).

4) The minimum specified load applied vertically at the top of every required guard shall be 1.5 kN/m (102.8 plf) and need not be considered to act simultaneously with the horizontal load provided for in Sentence (1).

5) For loads on handrails, refer to Sentence 3.4.6.4.(9).

2.1.2 Factors of Safety

Factors of safety for a guardrail system can be a somewhat subjective decision to be determined by the designer or certifying professional. Factors of safety are generally related to a mode of failure. Ductile failure, such as stable (no buckling) yielding of a metal element, is usually assigned a lower factor of safety than is brittle failure, such as screw fracture or anchor bolt pullout. Part 4 of the NBCC 2005 specifies a load factor of 1.5 to be applied to live loads. Since it is unlikely that the failure of any one component will cause the entire system to fail, a factor of safety of 1.5 for element and system design would seem appropriate. A higher or lower factor of safety may be appropriate depending upon the type of application and other considerations made by the certifying professional. For instance, a higher factor of safety may be more appropriate for glass infill panels since their failure is of a brittle nature. The guardrail configurations/design tables provided at the end of this manual have been developed using a minimum overall system factor of safety of 1.5.
2.2 MATERIALS AND PROPERTIES

2.2.1 Mechanical Properties Of Aluminum Alloys And Elements

Mechanical properties of aluminum alloys used in Alco Ventures Inc. Guardrail Systems are provided in CAN3-S157-M83 Strength Design in Aluminum and are listed in Table 1 below. Properties vary with the composition and temper of the material and also, to some degree, with the profile and the direction of stress.

<table>
<thead>
<tr>
<th>Alloy & products</th>
<th>NOT WELDED</th>
<th>WELDED</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tensile ultimate Fu</td>
<td>Tensile yield Fy</td>
</tr>
<tr>
<td>Extrusions and drawn tube</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6063-T5</td>
<td>150 MPa (21.8 ksi)</td>
<td>110 MPa (16.0 ksi)</td>
</tr>
<tr>
<td>6063-T54</td>
<td>230 MPa (33.4 ksi)</td>
<td>205 MPa (29.8 ksi)</td>
</tr>
<tr>
<td>6063-T6</td>
<td>205 MPa (29.8 ksi)</td>
<td>170 MPa (24.7 ksi)</td>
</tr>
<tr>
<td>Extrusions sheet, plate, and drawn tube</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6061-T6</td>
<td>260 MPa (37.7 ksi)</td>
<td>240 MPa (34.8 ksi)</td>
</tr>
<tr>
<td>6005A-T61</td>
<td>262 MPa (38.0 ksi)</td>
<td>241 MPa (35.0 ksi)</td>
</tr>
</tbody>
</table>

2.2.2 Physical Properties Of Guardrail Elements

Physical properties of sections of commonly used elements in Alco's Guardrail Systems are given in Table 2. Typical cross-sections of these elements are provided in Figure 2. Additional elements are show in Alco's Dealer Catalogue.
TABLE 2: PHYSICAL PROPERTIES OF COMMON ELEMENTS

<table>
<thead>
<tr>
<th>ELEMENTS</th>
<th>ALLOY</th>
<th>AREA MM^2 (IN^2)</th>
<th>Ixx 10^8MM^4 (IN^4)</th>
<th>Sxx 10^6mm^4 (in^4)</th>
<th>Iyy 10^6mm^4 (in^4)</th>
<th>Syy 10^6mm^4 (in^4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOP RAILS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>57.2 mm (2 ¼”) round top rail</td>
<td>6063-T5</td>
<td>469</td>
<td>.099</td>
<td>3.742</td>
<td>.171</td>
<td>.861</td>
</tr>
<tr>
<td>for glass panel infill</td>
<td></td>
<td>(.727)</td>
<td>(.237)</td>
<td>(.228)</td>
<td>(.412)</td>
<td>(.358)</td>
</tr>
<tr>
<td>57.2 mm (2 ¼”) square top rail</td>
<td>6063-T5</td>
<td>507</td>
<td>.124</td>
<td>4.783</td>
<td>.218</td>
<td>7.439</td>
</tr>
<tr>
<td>for glass panel infill</td>
<td></td>
<td>(.785)</td>
<td>(.298)</td>
<td>(.292)</td>
<td>(.523)</td>
<td>(.454)</td>
</tr>
<tr>
<td>57.2 mm (2 ¾”) round top rail</td>
<td>6063-T5</td>
<td>401</td>
<td>.099</td>
<td>3.705</td>
<td>.165</td>
<td>5.654</td>
</tr>
<tr>
<td>for picket infill</td>
<td></td>
<td>(.621)</td>
<td>(.238)</td>
<td>(.226)</td>
<td>(.397)</td>
<td>(.345)</td>
</tr>
<tr>
<td>57.2 mm (2 ¾”) square top rail</td>
<td>6063-T5</td>
<td>426</td>
<td>.124</td>
<td>4.730</td>
<td>.211</td>
<td>7.221</td>
</tr>
<tr>
<td>for picket infill</td>
<td></td>
<td>(.661)</td>
<td>(.298)</td>
<td>(.289)</td>
<td>(.507)</td>
<td>(.441)</td>
</tr>
<tr>
<td>TOP RAIL SLEEVES/CORNERS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inside round top rail sleeve/corner</td>
<td>6063-T5</td>
<td>278</td>
<td>.060</td>
<td>2.517</td>
<td>.105</td>
<td>3.966</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(.431)</td>
<td>(.120)</td>
<td>(.154)</td>
<td>(.251)</td>
<td>(.242)</td>
</tr>
<tr>
<td>Outside round top rail sleeve/corner</td>
<td>6063-T5</td>
<td>349</td>
<td>.139</td>
<td>4.399</td>
<td>.164</td>
<td>5.443</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(.541)</td>
<td>(.334)</td>
<td>(.268)</td>
<td>(.394)</td>
<td>(.332)</td>
</tr>
<tr>
<td>Outside square top rail sleeve/corner</td>
<td>6063-T5</td>
<td>398</td>
<td>.169</td>
<td>5.896</td>
<td>.224</td>
<td>6.996</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(.598)</td>
<td>(.407)</td>
<td>(.360)</td>
<td>(.538)</td>
<td>(.427)</td>
</tr>
<tr>
<td>BOTTOM RAILS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bottom rail for glass panel system</td>
<td>6063-T5</td>
<td>200</td>
<td>.021</td>
<td>.912</td>
<td>.040</td>
<td>2.356</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(.310)</td>
<td>(.050)</td>
<td>(.056)</td>
<td>(.097)</td>
<td>(.144)</td>
</tr>
<tr>
<td>Bottom rail for picket panel system</td>
<td>6061-T6</td>
<td>134</td>
<td>.003</td>
<td>.242</td>
<td>.022</td>
<td>1.254</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(.208)</td>
<td>(.007)</td>
<td>(.015)</td>
<td>(.052)</td>
<td>(.077)</td>
</tr>
<tr>
<td>POSTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>63.5 mm (2 ½”) square post</td>
<td>6005A-T61</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>50.8 mm (2”) square post</td>
<td>6005A-T61</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>38.1 mm (1 ¼”) square post</td>
<td>6005A-T61</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>MISCELLANEOUS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31.8 mm (1 ¼”) schedule 40 handrail pipe</td>
<td>6061-T6</td>
<td>431</td>
<td>.081</td>
<td>3.844</td>
<td>.081</td>
<td>3.844</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(.669)</td>
<td>(.195)</td>
<td>(.235)</td>
<td>(.195)</td>
<td>(.235)</td>
</tr>
<tr>
<td>Pickets</td>
<td>6061-T6</td>
<td>76</td>
<td>.003</td>
<td>.342</td>
<td>.003</td>
<td>.342</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(.118)</td>
<td>(.007)</td>
<td>(.021)</td>
<td>(.007)</td>
<td>(.021)</td>
</tr>
<tr>
<td>various plates</td>
<td>6061-T6</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>

Legend

I – moment of inertia
S – section modulus
*- element data exclusive property of Alco Ventures Inc. Use test results from Table 3 for design purposes
TOP RAILS

- 57.2 mm (2 1/4") round top rail for glass panel system
- 57.2 mm (2 1/4") round top rail for picket infill system
- 57.2 mm (2 1/4") square top rail for glass panel system
- 57.2 mm (2 1/4") square top rail for picket infill system

TOP RAIL SLEEVES/CORNERS

- Inside round top rail sleeve/corner
- Outside round top rail sleeve/corner
- Inside square top rail sleeve/corner
- Outside square top rail sleeve/corner

BOTTOM RAILS

- Bottom rail for glass panel system
- Bottom rail for picket infill system

POSTS

- 63.5 mm (2 1/2") square post, 2.03mm (0.080") wall thickness
- 50.8 mm (2") square post, 1.83mm (0.072") wall thickness
- 38.1 mm (1 1/2") square post, 1.65mm (0.065") wall thickness

FIGURE 2: TYPICAL CROSS-SECTIONS OF COMMON GUARDRAIL ELEMENTS
2.3 ELEMENT AND SYSTEM LOAD CapacITIES

Canadian Standards Association Document CAN3-S157-M83 Strength Design in Aluminium can be used in determining individual component capacities using conventional engineering design procedures. This method is somewhat conservative and limiting since it does not give consideration to the varying interactions of the elements in determining the load carrying capacity of the guardrail system. Complicated analysis procedures are necessary to achieve information for a more efficient design.

Alternatively, clause 1.4.1 of the aforementioned standard states, "In lieu of design calculations, the adequacy of a structural assembly may be proved by tests." Alco Ventures Inc. has conducted an extensive testing program using the services of Intertek Testing Services Na Ltd./Warnock Hershey, some of the results of which are provided in Table 3. Reports of the tests are available upon request. Since test results generally reflect more accurately the actual load carrying capacity of elements and systems, Alco Ventures Inc. recommends the use of test results, where possible, in determining acceptable guardrail designs.

2.4 LOAD DISTRIBUTION

Proper determination of load distribution is a necessary step in the efficient design of guardrail systems. Load distribution is affected by numerous factors, including but not limited to, the stiffness of the top rail relative to the stiffness of the posts, the continuity of the top rail, the length of each straight segment, the number of spans in a segment, the type of panel infill, and the end support conditions. Accurately determining the load distribution characteristics of a guardrail system requires a sophisticated approach. Alco Ventures Inc. has developed specialized computer modelling to determine the load distribution for its various systems and has performed extensive testing to verify the results.

Analysis and design of unique configurations requires specialized engineering which can be provided by Alco Ventures Inc. Use of this information in combination with test results is essential for the efficient design of safe guardrail systems.

2.5 ANCHORAGE

Proper anchorage of guardrail posts and rails to a sound and structurally adequate supporting structure is essential for a guardrail system. These elements must be as secure and rigid as possible. A structurally adequate supporting structure is as important as the anchorage elements themselves. One without the other compromises the load carrying capacity and performance of the guardrail system. Building designers and general contractors must be made aware of their responsibility to provide for proper support conditions since this is beyond the normal scope and control of the guardrail system designer or installer.

The anchorage and supporting structure for each post must be designed to carry the applied loads and their associated overturning moments at the post base. These loads comprise of shear, tension and compression forces which must be resisted. Figure 3 indicates some common and approved post base connections.

The anchorage and supporting structure of each top (and bottom) rail to base building components (wall, column, etc.) connection must be designed to carry the applied loads transferred from the top and bottom rail. The connection is assumed to provide pivot support with no flexural resistance. Shear loads and, depending upon the system configuration, pullout loads must be resisted. Figure 3 indicates some common and approved top and bottom rail to base building component connections.
TABLE 3: BW VISTA RAILINGS LTD. TESTING RESULTS

<table>
<thead>
<tr>
<th>Element/Component System</th>
<th>Average Ultimate Load Applied</th>
<th>Mode of Failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOP RAILS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>57.2 mm (2 ¼") round top rail for glass panel infill</td>
<td>3879 N (872 lbs.) total applied at 1/3 span points</td>
<td>Buckling @ load point</td>
</tr>
<tr>
<td>57.2 mm (2 ¼") square top rail for glass panel infill</td>
<td>4657 N (1047 lbs.) total load applied at 1/3 span points</td>
<td>Buckling @ support</td>
</tr>
<tr>
<td>57.2 mm (2 ¼") round top rail for picket infill</td>
<td>4688 N (1054 lbs.) total load applied at 1/3 span points</td>
<td>Buckling @ load point</td>
</tr>
<tr>
<td>57.2 mm (2 ¼") square top rail for picket infill</td>
<td>5609 N (1261 lbs.) total load applied at 1/3 span points</td>
<td>Buckling @ support</td>
</tr>
<tr>
<td>TOP RAILS WITH SLEEVES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>57.2 mm (2 ¼") round top rail with inside sleeve for picket infill</td>
<td>3966 N (892 lbs.) total load applied at 1/3 span points</td>
<td>Fastener tearing inner sleeve flange</td>
</tr>
<tr>
<td>57.2 mm (2 ¼") square top rail with outside sleeve for picket infill</td>
<td>4763 N (1071 lbs.) total load applied at 1/3 span points</td>
<td>Bending/deformation of rail ends at midspan connector</td>
</tr>
<tr>
<td>CORNERS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>90° round external corner</td>
<td>4350 N (978 lbs.) in tension and shear</td>
<td>Bottom inner weld of sleeve mitre tore open</td>
</tr>
<tr>
<td>90° square external corner</td>
<td>2980 N (670 lbs.) in tension and shear</td>
<td>Bottom inner weld of sleeve mitre tore open</td>
</tr>
<tr>
<td>135° round external corner</td>
<td>5308 N (1193 lbs.)</td>
<td>Bottom inner weld of sleeve mitre tore open</td>
</tr>
<tr>
<td>135° square external corner</td>
<td>4263 N (958 lbs)</td>
<td>Bottom inner weld of sleeve mitre tore open</td>
</tr>
<tr>
<td>POSTS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>63.5 mm (2 ½") square post anchored to steel frame</td>
<td>1837 N (413 lbs.) horizontal load @ 1067 mm (42") height</td>
<td>Bottom screws pulled through base plate</td>
</tr>
<tr>
<td>50.8 mm (2") square post anchored to steel frame</td>
<td>1370 N (308 lbs.) horizontal load @ 1067 mm (42") height</td>
<td>Bottom screws pulled through base plate</td>
</tr>
<tr>
<td>50.8 mm (2") square post fascia mounted to steel frame (42") height</td>
<td>1815 N (408 lbs.) horizontal load @ 1067 mm</td>
<td>Post wall buckling above upper support</td>
</tr>
<tr>
<td>38.1 mm (1 ½") square post anchored to steel frame</td>
<td>876 N (197 lbs.) horizontal load @ 1067 mm (42") height</td>
<td>Post wall buckling above upper support</td>
</tr>
<tr>
<td>38.1 mm (1 ½") square post with inside picket brace anchored to steel frame</td>
<td>946 N (213 lbs.) horizontal load @ 1067 mm</td>
<td>Post wall buckling above upper support</td>
</tr>
<tr>
<td>38.1 mm (1 ½") square post with inside picket brace anchored to steel frame with outside picket brace anchored to steel frame</td>
<td>1419 N (319 lbs.) horizontal load @ 1067 mm</td>
<td>Restraining picket brace broke baseplate weld</td>
</tr>
</tbody>
</table>
TABLE 3: BW VISTA RAILINGS LTD. TESTING RESULTS CONTINUED

<table>
<thead>
<tr>
<th>Element/Component System</th>
<th>Average Ultimate Load Applied</th>
<th>Mode of Failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>MISCELLANEOUS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31.8 mm (1 ¾“) schedule 40 handrail</td>
<td>91529 N (344 lbs.) total load applied at 1/3 span points</td>
<td>Uniform bending failure</td>
</tr>
<tr>
<td>Top rail end clip</td>
<td>6437 N (1447 lbs.) in shear</td>
<td>Forward screw top laterally out of chase</td>
</tr>
<tr>
<td>Bottom channel end clip</td>
<td>7915 N (1779 lbs.) in shear</td>
<td>Forward screw top laterally out of chase</td>
</tr>
<tr>
<td>Handrail bracket</td>
<td>1130 N (254 lbs.)</td>
<td>Bracket yielded</td>
</tr>
<tr>
<td>GLASS PANELS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 mm (.197“) tempered glass panel 914.4 mm (36”) x 304.8 mm (12”)</td>
<td></td>
<td>Fracture</td>
</tr>
<tr>
<td>5 mm (.197“) tempered glass panel 914.4 mm (36”) x 1219.2 mm (48”)</td>
<td></td>
<td>Fracture</td>
</tr>
<tr>
<td>5 mm (.197“) tempered glass panel 914.4 mm (36”) x 1219.2 mm (48”)</td>
<td>37.8 kPa (79 psf) distributed load over entire panel</td>
<td>Glass panel slips out of bottom rail</td>
</tr>
<tr>
<td>PICKET</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.9 mm (5/8”) picket</td>
<td>1140 N (256 lbs.) at midspan</td>
<td>Weld failure at end connection</td>
</tr>
<tr>
<td>15.9 mm (5/8”) picket panel 1118 mm (44”) x 972 mm (38 ¾”)</td>
<td></td>
<td>Weld failure at end connection</td>
</tr>
<tr>
<td>FASTENERS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#14 x 2 ½” screw secured to solid fir lumber</td>
<td>9359 N (2104 lbs.) withdrawal</td>
<td>Screw pulled out of wood</td>
</tr>
<tr>
<td>#14 x 2 ¾” screw secured to solid spruce lumber</td>
<td>6632 N (1491 lbs.) withdrawal</td>
<td>Screw pulled out of wood</td>
</tr>
<tr>
<td>#14 x 2” screw in post screw chase</td>
<td>21445 N (4821 lbs.) withdrawal</td>
<td>Restraining bolt tore through the aluminum post</td>
</tr>
<tr>
<td>#8 x 1 ½” screw in top rail sleeve</td>
<td>4982 N (1120 lbs.) withdrawal</td>
<td>Screw neck elongated and broke below head</td>
</tr>
</tbody>
</table>

NOTES:
1. Tests conducted by Intertek Testing Services Na Ltd./Warnock Hersey – reports available upon request.
3. Testing reviewed by Lang Structural Engineering Inc.
4. Design load for elements as specified by CSA CAN3-S157-M83 Strength Design in Aluminum for live loading is recommended to be the test load/1.5 (ultimate load capacity/1.5).
D.FIR-L WOOD BLOCKING ANCHORAGE TO MAIN STRUCTURE AND MAIN STRUCTURE LOAD CAPACITY RESPONSIBILITY OF OTHERS

FIGURE 3: ACCEPTABLE GUARDRAIL MOUNTING CONFIGURATIONS
9474-199A ST.
LANGLEY, B.C.
CANADA V1M 2X7
PH: (800)-667-8247
FAX: (604)-467-1197

BW VISTA RAILINGS LTD.

FIGURE 3 continued: ACCEPTABLE GUARDRAIL MOUNTING CONFIGURATIONS

D.FIR-L WOOD BLOCKING ANCHORAGE TO MAIN STRUCTURE AND MAIN STRUCTURE LOAD CAPACITY RESPONSIBILITY OF OTHERS
FIGURE 3continued: ACCEPTABLE GUARDRAIL MOUNTING CONFIGURATIONS
CONCRETE TO BE
MIN. 27.6 MPa
(4000 psi).

1 1/2" OR 2" POST
SIDE MOUNT TO CONCRETE

ALCO FACIA
BRACKET

3/8" x 3" LONG FOR 1 1/2" POST
1/2" x 4 1/2" LONG FOR 2" POST
HILTI KWIK BOLT II
EXPANSION ANCHOR

2 1/2" MIN. FOR 1 1/2" POST
3 3/4" MIN. FOR 2" POST
3" MIN. FOR 1 1/2" POST
3 3/4" MIN. FOR 2" POST
2 1/2" MIN. FOR 1 1/2" POST
3 3/4" MIN. FOR 2" POST

1 1/2" OR 2" POST
SIDE MOUNT TO D.FIR-L WOOD
FLOOR JOISTS PERPENDICULAR

ALCO FACIA
BRACKET

3/16" x 3 1/4" LONG
LAG SCREW

1 1/4" MIN.
ALTERNATE 5/16"Ø
THROUGH-BOLT

3" MIN THREAD LENGTH
EMBEDMENT IN WOOD

1 1/2" OR 2" POST
SIDE MOUNT TO D.FIR-L WOOD
FLOOR JOISTS PARALLEL

ALCO FACIA
BRACKET

3/16" x 3 1/4" LONG
LAG SCREW

1 1/4" MIN.
ALTERNATE 5/16"Ø
THROUGH-BOLT

3" MIN THREAD LENGTH
EMBEDMENT IN WOOD

WOOD BLOCKING ANCHORAGE TO MAIN STRUCTURE AND
MAIN STRUCTURE LOAD CAPACITY RESPONSIBILITY OF OTHERS

FIGURE 3continued: ACCEPTABLE GUARDRAIL MOUNTING CONFIGURATIONS

BW VISTA RAILINGS LTD.
FIGURE 3continued: ACCEPTABLE GUARDRAIL MOUNTING CONFIGURATIONS

WOOD BLOCKING ANCHORAGE TO MAIN STRUCTURE AND MAIN STRUCTURE LOAD CAPACITY RESPONSIBILITY OF OTHERS
FIGURE 3continued: ACCEPTABLE GUARDRAIL MOUNTING CONFIGURATIONS
To assist in design, the maximum service pull-out loads to be resisted by each anchor is summarized below for each type of post and anchorage configuration:

<table>
<thead>
<tr>
<th>Post</th>
<th>Anchorage Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>top mount using BW base plates</td>
</tr>
<tr>
<td>38.1mm (1 1/2”)</td>
<td>3505 N (788 lbs.) 2985 N (671 lbs.) 5 1/2” vertical spacing between anchors*</td>
</tr>
<tr>
<td>50.8mm (2”)</td>
<td>5480 N (1232 lbs.) 5720 N (1286 lbs.) 5 1/2” vertical spacing between anchors*</td>
</tr>
<tr>
<td>63.5mm (2 1/4”)</td>
<td>7348 N (1652 lbs.)</td>
</tr>
</tbody>
</table>

*As per Figure 3

2.6 WEAKNESS IN WELDED ALUMINUM

A review of the mechanical properties of aluminum alloys and elements in Table 1 indicates that tensile strength is significantly reduced in aluminum when it is welded. This has a significant impact on the strength capacity of aluminum guardrail components, connections and systems. At the bottom connection of posts to base plates, the connection and post capacity is substantially less in welded configurations compared to those using Vista mechanical fastening. Tests conducted by Intertek Testing Services Na Ltd./Warnock Hershey indicate that 38.1mm (1 1/2”) posts with welded base plates fail at loads an average of 35% lower than identical posts with Vista mechanical base plate connections. Tests conducted by Intertek Testing Services Na Ltd./Warnock Hershey of a 2 1/4” aluminum post of top deck mount configuration (an actual competitor of Vista’s) that uses a welded base plate failed at loads an average of 30% lower than the Vista 2” post. A copy of the report can be provided upon request. For these reasons, welded post base connections are generally not recommended.

2.7 DESIGN PROCEDURES

2.7.1 Top Rail Design

Top rail design normally involves using conventional engineering design procedures in determining and comparing section resisting moment capacities to resultant bending moments from applied loads. Connections between posts and rails are assumed to provide no flexural restraint. The bending moments in top rails are affected by the number and length of spans between posts in a straight run. Computer analysis of guardrail systems most accurately determines bending moments in top rails. The top rail moment capacity calculated using the section modulus (S) and material yield strength (Fy) (or alternatively from analysis of test results) must exceed the resultant bending moment from the applied loads.
2.7.2 Post Design

Posts in railing systems behave somewhat as vertical cantilevered beams in resisting horizontal loads applied to the top rail. Bending moments caused by horizontal loads normally control allowable post spacing and design. The first step in post design is determining the actual horizontal load that each post would be expected to carry. Horizontal load distribution from the top rail to each post is affected by a number of factors including the relative stiffness of the post and top rail, the length of each straight segment, the number of spans in the railing, and the end support conditions.

Computer modelling and analysis based on test results of guardrail systems most accurately assimilates top rail load distribution to each of the supporting posts and end conditions. The post moment capacity is calculated using the section modulus (S) and material yield strength (Fy). This must exceed the resultant bending moment from the applied loads or the post spacing is reduced to create an acceptable condition.

3.0 DESIGN TABLES

The design procedures described in the previous section have been carried out for a wide range of possible guardrail systems. The results are summarized in the tables which follow. By knowing the overall dimensions and layout of the guardrail system under design, an acceptable configuration can be selected using the tables.

The design tables are based upon the loading criteria for exterior balconies of individual residential units as specified in clauses 4.1.5.15. 1)a) and 4.1.5.15. 2) to 4) of the NBCC 2005. The actual load conditions for the guardrail system under design must be identical to or less than those used in the development of the tables. The tables should not be used for other applications where different loading conditions and configurations exist.

3.1 WIND LOADING

For glass infill guardrail systems, the structural strength requirements imposed by design wind loading may exceed those imposed by specified guardrail design loads. For uniform lateral specified wind pressures of not greater than 1.25 kPa (26 psf), guardrail design loads are the governing criteria for 1067 mm (42") high guardrail system design. This wind loading is generally associated with low-rise structures in most locations but must be verified as part of the design process. The allowable guardrail configurations indicated in figure 4 are all capable of withstanding this uniform lateral specified wind pressure. For wind pressure greater than 1.25 kPa (26 psf), adjust the allowable post spacing using the following formula:

\[
\text{modified post spacing} = \frac{\text{allowable post spacing} \times \frac{1.25}{\text{specified wind pressure (kPa)}}}{1}
\]
3.2 GUARDRAIL HEIGHT VARIATIONS

The most common guardrail system height is 1067 mm (42") high. For guardrail heights other than 1067 mm (42"), adjust the allowable post spacings as indicated in the allowable guardrail configurations of figure 4 using the following formula:

\[
\text{modified post spacing} = \text{allowable post spacing} \times \text{allowable post spacing multiplier}
\]

(See Table below for allowable post spacing multiplier)

<table>
<thead>
<tr>
<th>guardrail height</th>
<th>allowable post spacing multiplier for picket infill guardrail</th>
<th>allowable post spacing multiplier for glass infill guardrail</th>
</tr>
</thead>
<tbody>
<tr>
<td>457 mm (18")</td>
<td>2.33</td>
<td>2.33</td>
</tr>
<tr>
<td>610 mm (24")</td>
<td>1.75</td>
<td>1.75</td>
</tr>
<tr>
<td>762 mm (30")</td>
<td>1.40</td>
<td>1.40</td>
</tr>
<tr>
<td>914 mm (36")</td>
<td>1.17</td>
<td>1.17</td>
</tr>
<tr>
<td>1067 mm (42")</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>1219 mm (48")</td>
<td>0.88</td>
<td>0.76</td>
</tr>
<tr>
<td>1372 mm (54")</td>
<td>0.78</td>
<td>0.60</td>
</tr>
<tr>
<td>1524 mm (60")</td>
<td>0.70</td>
<td>0.49</td>
</tr>
<tr>
<td>1676 mm (66")</td>
<td>0.64</td>
<td>0.40</td>
</tr>
<tr>
<td>1829 mm (72")</td>
<td>0.58</td>
<td>0.34</td>
</tr>
</tbody>
</table>

3.3 GUARDRAIL SYSTEMS WITH ALUMINUM PICKET INFILL

Corner posts for aluminum picket infill guardrail systems may be eliminated and replaced with a picket corner provided one of the following conditions are met:

1) the end of the return portion of the top rail is anchored to the building, or

2) the return portion of the guardrail system is supported by a minimum of 2 posts.

3.4 GUARDRAIL SYSTEMS WITH GLASS PANEL INFILL

Post spacing for guardrail systems is generally determined by the strength of the supporting posts and applied loads. However, for guardrail systems with glass panel infill, consideration must be given to the size of the glass panels. Although testing has shown that glass panels supported by the top and bottom rails meet code requirements regardless of length of run, for practical purposes from the point of view of the installer, glass panel infills should be limited to not greater than 1676 mm (5'6") in length.
3.5 **FASCIA MOUNTED POSTS**

Guardrail systems using fascia or side mounted posts instead of top mounted posts are becoming more widely used. These systems have the advantage of not penetrating the building envelope. Furthermore, test results for fascia or side mounted posts have produced higher load values for the same posts in top mounted configurations. Consequently the post spacing indicated for the allowable configurations in figure 4 may be increased by using the following formula:

\[
\text{modified post spacing} = \frac{\text{allowable post spacing}}{\text{allowable post spacing multiplier}}
\]

(See Table below for allowable post spacing multiplier)

<table>
<thead>
<tr>
<th>Post</th>
<th>Allowable post spacing multiplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>38.1 mm (1 ½”) square post</td>
<td>1.05</td>
</tr>
<tr>
<td>50.8 mm (2”) square post</td>
<td>1.30</td>
</tr>
</tbody>
</table>
File No. 105-025

March 8, 2012

BW VISTA RAILINGS LTD.
9747 – 199A Street
Langley, B.C.
Canada V1M 2X7

Attention: Mr. Dale Rasmussen

RE: ALUMINUM GUARDRAIL SYSTEMS
BUILDING CODE COMPLIANCE

As requested, a series of 1067mm (42") high allowable guardrail configurations infilled with 5mm tempered glass or pickets and acceptable guardrail mounting configurations have been determined and are assembled on pages 23 to 45 inclusive and pages 12 to 17 inclusive respectively of the Canadian Alco Ventures Vista Aluminum Guardrail Systems Design Manual. These configurations are in conformance with the structural load requirements for balcony guardrails as specified in the following codes:

- City of Vancouver Building By-Law No. 9419, 2007, plus the most current amendments.

Since these configurations are designed to meet the most stringent applicable structural requirements of the above mentioned codes, the 1067mm (42") high allowable guardrail configurations infilled with 5mm tempered glass or pickets and guardrail mounting configurations referenced above are acceptable in any area of Canada in which these codes are enacted.

Contact us with any further questions concerning this.

Yours truly,
LANG STRUCTURAL ENGINEERING INC.

[Signature]

J.P. P.Eng.
FIGURE 4: GUARDRAIL CONFIGURATIONS
TYPE 1 - FREE-STANDING

TYPE 1A - END CONDITIONS — 2" POST EACH END
INTERMEDIATE CONDITIONS — 1 1/2" POSTS EVENLY SPACED

SEE FIGURE 3 AND SECTION 2.5 ANCHORAGE OF THE DESIGN MANUAL FOR DETAILS REGARDING ACCEPTABLE GUARDRAIL MOUNTING CONFIGURATIONS AND MAXIMUM SERVICE PULL-OUT LOAD REQUIREMENTS FOR ANCHORS.

POST LEGEND

1 1/2" 2" 2 1/2"

POST SIZES

NOTES:
—CONFIGURATIONS SHOWN ACCEPTABLE FOR TOP MOUNT (AS SHOWN) AND SIDE/FASCIA MOUNT CONDITIONS FOR BOTH 5MM TEMPERED GLASS (AS SHOWN) AND PICKET GUARDRAIL SYSTEMS.

—ALLOWABLE CONFIGURATIONS ARE BASED UPON ANALYSIS, CALCULATIONS AND RESULTS OF TESTS CONDUCTED BY INTERTEK TESTING SERVICES NA LTD./WARNOCK HERSHEY.

—ALLOWABLE CONFIGURATIONS ARE IN CONFORMANCE WITH THE APPLICABLE STRUCTURAL REQUIREMENTS SPECIFIED IN THE NATIONAL BUILDING CODE OF CANADA 2005 SECTION 4.1.5.15.

FIGURE 4A: 42" HIGH ALLOWABLE CONFIGURATIONS TYPE 1A
TYPE 1A ALTERNATE
OPTIONAL CONFIGURATIONS
w/ 2" POSTS ADDED
IN INTERMEDIATE SPACES

TYPE 1 - FREE-STANDING

TYPE 1A - END CONDITIONS
- 2" POST EACH END
INTERMEDIATE CONDITIONS
- 1 1/2" POSTS EVENLY SPACED

POST LEGEND

SEE FIGURE 3 AND SECTION 2.5 ANCHORAGE
OF THE DESIGN MANUAL FOR DETAILS
REGARDING ACCEPTABLE GUARDRAIL
MOUNTING CONFIGURATIONS AND
MAXIMUM SERVICE PULL-OUT LOAD
REQUIREMENTS FOR ANCHORS.

POST SIZES

NOTES:
- CONFIGURATIONS SHOWN ACCEPTABLE FOR TOP MOUNT
 (AS SHOWN) AND SIDE/FASCIA MOUNT CONDITIONS FOR BOTH
5MM TEMPERED GLASS (AS SHOWN) AND PICKET GUARDRAIL SYSTEMS.
- ALLOWABLE CONFIGURATIONS ARE BASED UPON ANALYSIS,
 CALCULATIONS AND RESULTS OF TESTS CONDUCTED BY INTERTEK
 TESTING SERVICES NA LTD./WARNOCK HERSEY.
- ALLOWABLE CONFIGURATIONS ARE IN CONFORMANCE WITH THE
 APPLICABLE STRUCTURAL REQUIREMENTS SPECIFIED IN THE
 NATIONAL BUILDING CODE OF CANADA 2005 SECTION 4.1.5.15.

FIGURE 4A-A: 42" HIGH ALLOWABLE CONFIGURATIONS TYPE 1A-ALTERNATE

BW VISTA RAILINGS LTD.
TYPE 1 - FREE-STANDING

TYPE 1B - END CONDITIONS - 2 1/2" POST EACH END
INTERMEDIATE CONDITIONS - 1 1/2" POSTS EVENLY SPACED

SEE FIGURE 3 AND SECTION 2.5 ANCHORAGE OF THE DESIGN MANUAL FOR DETAILS REGARDING ACCEPTABLE GUARDRAIL MOUNTING CONFIGURATIONS AND MAXIMUM SERVICE PULL-OUT LOAD REQUIREMENTS FOR ANCHORS.

POST LEGEND
1 1/2" 2" 2 1/2"
POST SIZES

NOTES:

- CONFIGURATIONS SHOWN ACCEPTABLE FOR TOP MOUNT (AS SHOWN) AND SIDE/FASCIA MOUNT CONDITIONS FOR BOTH 5MM TEMPERED GLASS (AS SHOWN) AND PICKET GUARDRAIL SYSTEMS.

- ALLOWABLE CONFIGURATIONS ARE BASED UPON ANALYSIS, CALCULATIONS AND RESULTS OF TESTS CONDUCTED BY INTERTEK TESTING SERVICES NA LTD./WARNOCK HERSHEY.

- ALLOWABLE CONFIGURATIONS ARE IN CONFORMANCE WITH THE APPLICABLE STRUCTURAL REQUIREMENTS SPECIFIED IN THE NATIONAL BUILDING CODE OF CANADA 2005 SECTION 4.1.5.15.

FIGURE 4B: 42" HIGH ALLOWABLE CONFIGURATIONS TYPE 1B
TYPE 1B ALTERNATE
OPTIONAL CONFIGURATIONS
w/ 2” POSTS ADDED
IN INTERMEDIATE SPACES

TYPE 1 – FREE-STANDING

- TYPE 1B – END CONDITIONS: 2 1/2” POST EACH END
- INTERMEDIATE CONDITIONS: 1 1/2” POSTS EVENLY SPACED

SEE FIGURE 3 AND SECTION 2.5 ANCHORAGE OF THE DESIGN MANUAL FOR DETAILS REGARDING ACCEPTABLE GUARDRAIL MOUNTING CONFIGURATIONS AND MAXIMUM SERVICE PULL-OUT LOAD REQUIREMENTS FOR ANCHORS.

POST LEGEND

1 1/2” 2” 2 1/2”

POST SIZES

NOTES:
- CONFIGURATIONS SHOWN ACCEPTABLE FOR TOP MOUNT (AS SHOWN) AND SIDE/FASCIA MOUNT CONDITIONS FOR BOTH 5MM TEMPERED GLASS (AS SHOWN) AND PICKET GUARDRAIL SYSTEMS.
- ALLOWABLE CONFIGURATIONS ARE BASED UPON ANALYSIS, CALCULATIONS AND RESULTS OF TESTS CONDUCTED BY INTERTEK TESTING SERVICES NA LTD./WARNOCK HERSEY.
- ALLOWABLE CONFIGURATIONS ARE IN CONFORMANCE WITH THE APPLICABLE STRUCTURAL REQUIREMENTS SPECIFIED IN THE NATIONAL BUILDING CODE OF CANADA 2005 SECTION 4.1.5.15.

FIGURE 4B-A: 42” HIGH ALLOWABLE CONFIGURATIONS TYPE 1B-ALTERNATE
TYPE 1 – FREE-STANDING

TYPE 1C – END CONDITIONS – 2" POST EACH END
INTERMEDIATE CONDITIONS – 2" POSTS EVENLY SPACED

SEE FIGURE 3 AND SECTION 2.5 ANCHORAGE
OF THE DESIGN MANUAL FOR DETAILS
REGARDING ACCEPTABLE GUARDRAIL
MOUNTING CONFIGURATIONS AND
MAXIMUM SERVICE PULL-OUT LOAD
REQUIREMENTS FOR ANCHORS.

POST LEGEND

NOTES:
- CONFIGURATIONS SHOWN ACCEPTABLE FOR TOP MOUNT
 (AS SHOWN) AND SIDE/FASCIA MOUNT CONDITIONS FOR BOTH
5MM TEMPERED GLASS (AS SHOWN) AND PICKET GUARDRAIL SYSTEMS.
- ALLOWABLE CONFIGURATIONS ARE BASED UPON ANALYSIS,
 CALCULATIONS AND RESULTS OF TESTS CONDUCTED BY INTERTEK
 TESTING SERVICES NA LTD./WARNOCK HERSHEY.
- ALLOWABLE CONFIGURATIONS ARE IN CONFORMANCE WITH THE
 APPLICABLE STRUCTURAL REQUIREMENTS SPECIFIED IN THE
 NATIONAL BUILDING CODE OF CANADA 2005 SECTION 4.1.5.15.

FIGURE 4C: 42" HIGH ALLOWABLE CONFIGURATIONS TYPE 1C

BW VISTA RAILINGS LTD.
TYPE 1 – FREE-STANDING

TYPE 1D – END CONDITIONS – 2½” POST EACH END
INTERMEDIATE CONDITIONS – 2” POSTS EVENLY SPACED

SEE FIGURE 3 AND SECTION 2.5 ANCHORAGE OF THE DESIGN MANUAL FOR DETAILS REGARDING ACCEPTABLE GUARDRAIL MOUNTING CONFIGURATIONS AND MAXIMUM SERVICE PULL-OUT LOAD REQUIREMENTS FOR ANCHORS.

POST LEGEND

- 1½”
- 2”
- 2½”

POST SIZES

NOTES:
- CONFIGURATIONS SHOWN ACCEPTABLE FOR TOP MOUNT (AS SHOWN) AND SIDE/FASCIA MOUNT CONDITIONS FOR BOTH SMM TEMPERED GLASS (AS SHOWN) AND PICKET GUARDRAIL SYSTEMS.
- ALLOWABLE CONFIGURATIONS ARE BASED UPON ANALYSIS, CALCULATIONS AND RESULTS OF TESTS CONDUCTED BY INTERTEK TESTING SERVICES NA LTD./WARNOCK HERSHEY.
- ALLOWABLE CONFIGURATIONS ARE IN CONFORMANCE WITH THE APPLICABLE STRUCTURAL REQUIREMENTS SPECIFIED IN THE NATIONAL BUILDING CODE OF CANADA 2005 SECTION 4.1.5.15.

FIGURE 4D: 42” HIGH ALLOWABLE CONFIGURATIONS TYPE 1D

BW VISTA RAILINGS LTD.
TYPE 1 — FREE-STANDING

TYPE 1E — END CONDITIONS
- 2½" POST EACH END

INTERMEDIATE CONDITIONS
- 2½" POSTS EVENLY SPACED

POST LEGEND

1½" | 2" | 2½"

SEE FIGURE 3 AND SECTION 2.5 ANCHORAGE OF THE DESIGN MANUAL FOR DETAILS REGARDING ACCEPTABLE GUARDRAIL MOUNTING CONFIGURATIONS AND MAXIMUM SERVICE PULL-OUT LOAD REQUIREMENTS FOR ANCHORS.

NOTES:

- CONFIGURATIONS SHOWN ACCEPTABLE FOR TOP MOUNT (AS SHOWN) AND SIDE/FASCIA MOUNT CONDITIONS FOR BOTH 5MM TEMPERED GLASS (AS SHOWN) AND PICKET GUARDRAIL SYSTEMS.

- ALLOWABLE CONFIGURATIONS ARE BASED UPON ANALYSIS, CALCULATIONS AND RESULTS OF TESTS CONDUCTED BY INTERTEK TESTING SERVICES NA LTD./WARNock HERSHEY.

- ALLOWABLE CONFIGURATIONS ARE IN CONFORMANCE WITH THE APPLICABLE STRUCTURAL REQUIREMENTS SPECIFIED IN THE NATIONAL BUILDING CODE OF CANADA 2005 SECTION 4.1.5.15.

FIGURE 4E: 42" HIGH ALLOWABLE CONFIGURATIONS TYPE 1E

BW VISTA RAILINGS LTD.
TYPE 2 – PARTIAL FIXED ONE END

TYPE 2A – END CONDITIONS – 45° CORNER w/ MIN 1–1 1/2" POST AND 1–2" POST AT END & 2" POST OPPOSITE END
INTERMEDIATE CONDITIONS – 1 1/2" POSTS EVENLY SPACED

SEE FIGURE 3 AND SECTION 2.5 ANCHORAGE OF THE DESIGN MANUAL FOR DETAILS REGARDING ACCEPTABLE GUARDRAIL MOUNTING CONFIGURATIONS AND MAXIMUM SERVICE PULL-OUT LOAD REQUIREMENTS FOR ANCHORS.

POST LEGEND

<table>
<thead>
<tr>
<th>POST SIZES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1/2"</td>
</tr>
<tr>
<td>2"</td>
</tr>
<tr>
<td>2 1/2"</td>
</tr>
</tbody>
</table>

NOTES:

- CONFIGURATIONS SHOWN ACCEPTABLE FOR TOP MOUNT (AS SHOWN) AND SIDE/FASCIA MOUNT CONDITIONS FOR BOTH 5MM TEMPERED GLASS (AS SHOWN) AND PICKET GUARDRAIL SYSTEMS.

- ALLOWABLE CONFIGURATIONS ARE BASED UPON ANALYSIS, CALCULATIONS AND RESULTS OF TESTS CONDUCTED BY INTERTEK TESTING SERVICES NA LTD./WARNOCK HERSHEY.

- ALLOWABLE CONFIGURATIONS ARE IN CONFORMANCE WITH THE APPLICABLE STRUCTURAL REQUIREMENTS SPECIFIED IN THE NATIONAL BUILDING CODE OF CANADA 2005 SECTION 4.1.5.15.

FIGURE 4F: 42" HIGH ALLOWABLE CONFIGURATIONS TYPE 2A

BW VISTA RAILINGS LTD.
TYPE 2 – PARTIAL FIXED ONE END

TYPE 2B – END CONDITIONS – 45° CORNER w/ MIN 2–2” POSTS & 2” POST OPPOSITE END
INTERMEDIATE CONDITIONS – 2” POSTS EVENLY SPACED

SEE FIGURE 3 AND SECTION 2.5 ANCHORAGE OF THE DESIGN MANUAL FOR DETAILS REGARDING ACCEPTABLE GUARDRAIL MOUNTING CONFIGURATIONS AND MAXIMUM SERVICE PULL-OUT LOAD REQUIREMENTS FOR ANCHORS.

NOTES:
– CONFIGURATIONS SHOWN ACCEPTABLE FOR TOP MOUNT (AS SHOWN) AND SIDE/FASCIA MOUNT CONDITIONS FOR BOTH 5MM TEMPERED GLASS (AS SHOWN) AND PICKET GUARDRAIL SYSTEMS.
– ALLOWABLE CONFIGURATIONS ARE BASED UPON ANALYSIS, CALCULATIONS AND RESULTS OF TESTS CONDUCTED BY INTERTEK TESTING SERVICES NA LTD./WARMACK HERSHEY.
– ALLOWABLE CONFIGURATIONS ARE IN CONFORMANCE WITH THE APPLICABLE STRUCTURAL REQUIREMENTS SPECIFIED IN THE NATIONAL BUILDING CODE OF CANADA 2005 SECTION 4.1.5.15.

FIGURE 4G: 42” HIGH ALLOWABLE CONFIGURATIONS TYPE 2B
TYPE 3 - FIXED ONE END

TYPE 3A - END CONDITIONS - TOP RAIL END CLIP TO STRUCTURE OR 90° CORNER W/ MIN 1-1/2" POST AND 1-2" POST AT END & 2" POST OPPOSITE END
INTERMEDIATE CONDITIONS - 1-1/2" POSTS EVENLY SPACED

SEE FIGURE 3 AND SECTION 2.5 ANCHORAGE OF THE DESIGN MANUAL FOR DETAILS REGARDING ACCEPTABLE GUARDRAIL MOUNTING CONFIGURATIONS AND MAXIMUM SERVICE PULL-OUT LOAD REQUIREMENTS FOR ANCHORS.

POST LEGEND

1-1/2" 2" 2-1/2"
POST SIZES

NOTES:
- CONFIGURATIONS SHOWN ACCEPTABLE FOR TOP MOUNT (AS SHOWN) AND SIDE/FASCIA MOUNT CONDITIONS FOR BOTH 5MM TEMPERED GLASS (AS SHOWN) AND PICKET GUARDRAIL SYSTEMS.
- ALLOWABLE CONFIGURATIONS ARE BASED UPON ANALYSIS, CALCULATIONS AND RESULTS OF TESTS CONDUCTED BY INTERTEK TESTING SERVICES NA LTD./WARNOCK HERSHEY.
- ALLOWABLE CONFIGURATIONS ARE IN CONFORMANCE WITH THE APPLICABLE STRUCTURAL REQUIREMENTS SPECIFIED IN THE NATIONAL BUILDING CODE OF CANADA 2005 SECTION 4.1.5.15.

FIGURE 4H: 42" HIGH ALLOWABLE CONFIGURATIONS TYPE 3A
TYPE 3 - FIXED ONE END

TYPE 3A - END CONDITIONS - TOP RAIL END CLIP TO STRUCTURE OR 90° CORNER WITH MIN 1-1/2" POST AND 1-2" POST AT END & 2" POST OPPOSITE END
INTERMEDIATE CONDITIONS - 1-1/2" POSTS EVENLY SPACED

SEE FIGURE 3 AND SECTION 2.5 ANCHORAGE OF THE DESIGN MANUAL FOR DETAILS REGARDING ACCEPTABLE GUARDRAIL MOUNTING CONFIGURATIONS AND MAXIMUM SERVICE PULL-OUT LOAD REQUIREMENTS FOR ANCHORS.

POST LEGEND

1-1/2" 2" 2-1/2"

POST SIZES

NOTES:

- CONFIGURATIONS SHOWN ACCEPTABLE FOR TOP MOUNT (AS SHOWN) AND SIDE/FASCIA MOUNT CONDITIONS FOR BOTH 5MM TEMPERED GLASS (AS SHOWN) AND PICKET GUARDRAIL SYSTEMS.

- ALLOWABLE CONFIGURATIONS ARE BASED UPON ANALYSIS, CALCULATIONS AND RESULTS OF TESTS CONDUCTED BY INTEK TESTING SERVICES NA LTD./WARNOK HERSHEY.

- ALLOWABLE CONFIGURATIONS ARE IN CONFORMANCE WITH THE APPLICABLE STRUCTURAL REQUIREMENTS SPECIFIED IN THE NATIONAL BUILDING CODE OF CANADA 2005 SECTION 4.1.5.15.

FIGURE 4H-A: 42" HIGH ALLOWABLE CONFIGURATIONS TYPE 3A-ALTERNATE

BW VISTA RAILINGS LTD.
TYPE 3 – FIXED ONE END

TYPE 3B – END CONDITIONS
- TOP RAIL END CLIP TO STRUCTURE OR 90° CORNER W/ MIN 1-1/2" POST AND 1-2" POST AT END & 2-1/2" POST OPPOSITE END
INTERMEDIATE CONDITIONS – 1-1/2" POSTS EVENLY SPACED

SEE FIGURE 3 AND SECTION 2.5 ANCHORAGE OF THE DESIGN MANUAL FOR DETAILS REGARDING ACCEPTABLE GUARDRAIL MOUNTING CONFIGURATIONS AND MAXIMUM SERVICE PULL-OUT LOAD REQUIREMENTS FOR ANCHORS.

POST LEGEND

1-1/2" 2" 2-1/2"
POST SIZES

NOTES:
- CONFIGURATIONS SHOWN ACCEPTABLE FOR TOP MOUNT (AS SHOWN) AND SIDE/FASCIA MOUNT CONDITIONS FOR BOTH 5MM TEMPERED GLASS (AS SHOWN) AND PICKET GUARDRAIL SYSTEMS.
- ALLOWABLE CONFIGURATIONS ARE BASED UPON ANALYSIS, CALCULATIONS AND RESULTS OF TESTS CONDUCTED BY INTERTEK TESTING SERVICES NA LTD./WARNOCK HERSHEY.
- ALLOWABLE CONFIGURATIONS ARE IN CONFORMANCE WITH THE APPLICABLE STRUCTURAL REQUIREMENTS SPECIFIED IN THE NATIONAL BUILDING CODE OF CANADA 2005 SECTION 4.1.5.15.

FIGURE 41: 42” HIGH ALLOWABLE CONFIGURATIONS TYPE 3B

BW VISTA RAILINGS LTD.
TYPE 3 - FIXED ONE END

TYPE 3B - END CONDITIONS
- Top rail end clip to structure
- Or 90° corner w/min 1-1/2" post
- And 1-2" post at end
- & 2-1/2" post opposite end
- Intermediate conditions - 1-1/2" posts evenly spaced

TYPE 3B ALTERNATE
Optional configurations w/ 2" posts added in intermediate spaces

POST LEGEND
1-1/2" 2" 2-1/2"
POST SIZES

NOTES:
- Configurations shown acceptable for top mount (as shown) and side/fascia mount conditions for both 5mm tempered glass (as shown) and picket guardrail systems.
- Allowable configurations are based upon analyses, calculations and results of tests conducted by Intertek Testing Services NA Ltd./Warnock Hershey.
- Allowable configurations are in conformance with the applicable structural requirements specified in the National Building Code of Canada 2005 Section 4.1.3.15.

FIGURE 41-A: 42" HIGH ALLOWABLE CONFIGURATIONS TYPE 3B-ALTERNATE
TYPE 3 – FIXED ONE END

TYPE 3C – END CONDITIONS
- Top rail end clip to structure or 90° corner w/ min 2-2’ posts & 2” post opposite end
- Intermediate conditions – 2” posts evenly spaced

SEE FIGURE 3 AND SECTION 2.5 ANCHORAGE OF THE DESIGN MANUAL FOR DETAILS REGARDING ACCEPTABLE GUARDRAIL MOUNTING CONFIGURATIONS AND MAXIMUM SERVICE PULL–OUT LOAD REQUIREMENTS FOR ANCHORS.

POST LEGEND

POST SIZES

1½” 2” 2½”

NOTES:
- Configurations shown acceptable for top mount (as shown) and side/fascia mount conditions for both 5mm tempered glass (as shown) and picket guardrail systems.
- Allowable configurations are based upon analysis, calculations, and results of tests conducted by Intertek Testing Services NA Ltd./Warnock Hershey.
- Allowable configurations are in conformance with the applicable structural requirements specified in the National Building Code of Canada 2005 Section 4.1.5.15.

FIGURE 4J: 42” HIGH ALLOWABLE CONFIGURATIONS TYPE 3C

BW VISTA RAILINGS LTD.
TYPE 3 – FIXED ONE END

TYPE 3D – END CONDITIONS
- Top rail end clip to structure or 90° corner w/ min 2-2" posts & 2½" post opposite end
- Intermediate conditions – 2" posts evenly spaced

SEE FIGURE 3 AND SECTION 2.5 ANCHORAGE OF THE DESIGN MANUAL FOR DETAILS REGARDING ACCEPTABLE GUARDRAIL MOUNTING CONFIGURATIONS AND MAXIMUM SERVICE PULL-OUT LOAD REQUIREMENTS FOR ANCHORS.

POST LEGEND

POST SIZES

1½" 2" 2½"

NOTES:
- Configurations shown acceptable for top mount (as shown) and side/fascia mount conditions for both 5mm tempered glass (as shown) and picket guardrail systems.
- Allowable configurations are based upon analysis, calculations and results of tests conducted by Intertek Testing Services NA Ltd./Warnock Hershey.
- Allowable configurations are in conformance with the applicable structural requirements specified in the National Building Code of Canada 2005 Section 4.1.5.15.

FIGURE 4K: 42" HIGH ALLOWABLE CONFIGURATIONS TYPE 3D

BW VISTA RAILINGS LTD.
TYPE 4 – PARTIAL FIXED BOTH ENDS

TYPE 4A – END CONDITIONS – 45° CORNERS w/ MIN 1-1/2" POST AND 1-2" POST AT END
INTERMEDIATE CONDITIONS – 1-1/2" POSTS EVENLY SPACED

SEE FIGURE 3 AND SECTION 2.5 ANCHORAGE OF THE DESIGN MANUAL FOR DETAILS REGARDING ACCEPTABLE GUARDRAIL MOUNTING CONFIGURATIONS AND MAXIMUM SERVICE PULL-OUT LOAD REQUIREMENTS FOR ANCHORS.

POST LEGEND

NOTES:
– CONFIGURATIONS SHOWN ACCEPTABLE FOR TOP MOUNT (AS SHOWN) AND SIDE/FASCIA MOUNT CONDITIONS FOR BOTH 5MM TEMPERED GLASS (AS SHOWN) AND PICKET GUARDRAIL SYSTEMS.
– ALLOWABLE CONFIGURATIONS ARE BASED UPON ANALYSIS, CALCULATIONS AND RESULTS OF TESTS CONDUCTED BY INTERTEK TESTING SERVICES NA LTD./WARNOCK HERSHEY.
– ALLOWABLE CONFIGURATIONS ARE IN CONFORMANCE WITH THE APPLICABLE STRUCTURAL REQUIREMENTS SPECIFIED IN THE NATIONAL BUILDING CODE OF CANADA 2005 SECTION 4.1.5.15.

FIGURE 4L: 42" HIGH ALLOWABLE CONFIGURATIONS TYPE 4A
NOTES:
- Configurations shown acceptable for top mount (as shown) and side/fascia mount conditions for both 5mm tempered glass (as shown) and picket guardrail systems.
- Allowable configurations are based upon analysis, calculations and results of tests conducted by InterTek Testing Services NA Ltd./Warnock Hershey.
- Allowable configurations are in conformance with the applicable structural requirements specified in the National Building Code of Canada 2005 Section 4.1.5.15.

TYPE 4 - PARTIAL FIXED BOTH ENDS

TYPE 4B - END CONDITIONS - 45° CORNERS w/ MIN 2-2" POSTS
INTERMEDIATE CONDITIONS - 2" POSTS EVENLY SPACED

SEE FIGURE 3 AND SECTION 2.5 ANCHORAGE OF THE DESIGN MANUAL FOR DETAILS REGARDING ACCEPTABLE GUARDRAIL MOUNTING CONFIGURATIONS AND MAXIMUM SERVICE PULL-OUT LOAD REQUIREMENTS FOR ANCHORS.
TYPE 5 - FIXED & PARTIAL FIXED ENDS

TYPE 5A - END CONDITIONS
- TOP RAIL END CLIP TO STRUCTURE OR 90° CORNER w/ MIN 1-11/2" POST AND 1-2" POST AT END
& 45° CORNER w/ MIN 1-11/2" POST AND 1-2" POST AT END
INTERMEDIATE CONDITIONS - 11/2" POSTS EVENLY SPACED

SEE FIGURE 3 AND SECTION 2.5 ANCHORAGE OF THE DESIGN MANUAL FOR DETAILS REGARDING ACCEPTABLE GUARDRAIL MOUNTING CONFIGURATIONS AND MAXIMUM SERVICE PULL-OUT LOAD REQUIREMENTS FOR ANCHORS.

NOTES:
- CONFIGURATIONS SHOWN ACCEPTABLE FOR TOP MOUNT (AS SHOWN) AND SIDE/FASCIA MOUNT CONDITIONS FOR BOTH 5MM TEMPERED GLASS (AS SHOWN) AND PICKET GUARDRAIL SYSTEMS.
- ALLOWABLE CONFIGURATIONS ARE BASED UPON ANALYSIS, CALCULATIONS AND RESULTS OF TESTS CONDUCTED BY INTERTEK TESTING SERVICES NA LTD./WARNOCK HERSHEY.
- ALLOWABLE CONFIGURATIONS ARE IN CONFORMANCE WITH THE APPLICABLE STRUCTURAL REQUIREMENTS SPECIFIED IN THE NATIONAL BUILDING CODE OF CANADA 2005 SECTION 4.1.5.15.

FIGURE 4N: 42" HIGH ALLOWABLE CONFIGURATIONS TYPE 5A

BW VISTA RAILINGS LTD.
NOTES:

- Configurations shown acceptable for top mount (as shown) and side/fascia mount conditions for both 5mm tempered glass (as shown) and picket guardrail systems.
- Allowable configurations are based upon analysis, calculations and results of tests conducted by Intertek Testing Services NA Ltd./Warnock Hershey.
- Allowable configurations are in conformance with the applicable structural requirements specified in the National Building Code of Canada 2005 Section 4.1.5.15.

TYPE 5 - FIXED & PARTIAL FIXED ENDS

TYPE 5B - END CONDITIONS

- Top rail end clip to structure or 90° corner w/ min 2-2" posts & 45° corner w/ min 2-2" posts
- Intermediate conditions - 2" posts evenly spaced

SEE FIGURE 3 AND SECTION 2.5 ANCHORAGE OF THE DESIGN MANUAL FOR DETAILS REGARDING ACCEPTABLE GUARDRAIL MOUNTING CONFIGURATIONS AND MAXIMUM SERVICE PULL-OUT LOAD REQUIREMENTS FOR ANCHORS.

POST LEGEND

<table>
<thead>
<tr>
<th>Post Size</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1/2"</td>
<td></td>
</tr>
<tr>
<td>2"</td>
<td></td>
</tr>
<tr>
<td>2 1/2"</td>
<td></td>
</tr>
</tbody>
</table>

FIGURE 4O: 42" HIGH ALLOWABLE CONFIGURATIONS TYPE 5B

BW VISTA RAILINGS LTD.
TYPE 6 – FIXED BOTH ENDS

TYPE 6A – END CONDITIONS
- TOP RAIL END CLIPS TO STRUCTURE
- OR 90° CORNERS w/ MIN 1-1/2” POST
- AND 1-2” POST AT END
- INTERMEDIATE CONDITIONS – 1-1/2” POSTS EVENLY SPACED

SEE FIGURE 3 AND SECTION 2.5 ANCHORAGE
OF THE DESIGN MANUAL FOR DETAILS
REGARDING ACCEPTABLE GUARDRAIL
MOUNTING CONFIGURATIONS AND
MAXIMUM SERVICE PULL-OUT LOAD
REQUIREMENTS FOR ANCHORS.

POST LEGEND
1-1/2” 2” 2-1/2”
POST SIZES

NOTES:
- CONFIGURATIONS SHOWN ACCEPTABLE FOR TOP MOUNT
 (AS SHOWN) AND SIDE/FASCIA MOUNT CONDITIONS FOR BOTH
5MM TEMPERED GLASS (AS SHOWN) AND PICKET GUARDRAIL SYSTEMS.
- ALLOWABLE CONFIGURATIONS ARE BASED UPON ANALYSIS,
CALCULATIONS AND RESULTS OF TESTS CONDUCTED BY INTERTEK
TESTING SERVICES NA LTD./WARNOCK HERSHEY.
- ALLOWABLE CONFIGURATIONS ARE IN CONFORMANCE WITH THE
APPLICABLE STRUCTURAL REQUIREMENTS SPECIFIED IN THE
NATIONAL BUILDING CODE OF CANADA 2005 SECTION 4.1.5.15.

FIGURE 4P: 42” HIGH ALLOWABLE CONFIGURATIONS TYPE 6A

BW VISTA RAILINGS LTD.
FIGURE 4P-A: 42" HIGH ALLOWABLE CONFIGURATIONS TYPE 6A ALTERNATE
FIGURE 4Q: 42" HIGH ALLOWABLE CONFIGURATIONS TYPE 6B

NOTES:
- Configurations shown acceptable for top mount (as shown) and side/fascia mount conditions for both 5mm tempered glass (as shown) and picket guardrail systems.
- Allowable configurations are based upon analysis, calculations, and results of tests conducted by Intertek Testing Services NA Ltd./Warnock Hershey.
- Allowable configurations are in conformance with the applicable structural requirements specified in the National Building Code of Canada 2005 Section 4.1.5.15.

SEE FIGURE 3 AND SECTION 2.5 ANCHORAGE OF THE DESIGN MANUAL FOR DETAILS REGARDING ACCEPTABLE GUARDRAIL MOUNTING CONFIGURATIONS AND MAXIMUM SERVICE PULL-OUT LOAD REQUIREMENTS FOR ANCHORS.